13 February 2026

A-Level Chemistry: Electrode Potentials – Making Sense of Redox


 A-Level Chemistry: Electrode Potentials – Making Sense of Redox

If there’s one topic in A-Level Chemistry that feels abstract at first glance, it’s electrode potentials. Lots of half-equations. Lots of numbers. A mysterious hydrogen electrode at 0.00 V.

But once students see what’s really going on, it becomes beautifully logical.


🔋 What Is an Electrode Potential?

An electrode potential (E°) measures the tendency of a species to gain electrons (be reduced).

All values are measured relative to the:

Standard Hydrogen Electrode (SHE)

  • Defined as 0.00 V

  • 1 mol dm⁻³ H⁺

  • 100 kPa H₂ gas

  • 298 K (25°C)

  • Platinum electrode

Every other half-cell is compared to this.


📈 What Do the Values Mean?

  • More positive E° → greater tendency to be reduced.

  • More negative E° → greater tendency to lose electrons (be oxidised).

For example:

  • Cu²⁺ + 2e⁻ → Cu  E° = +0.34 V

  • Zn²⁺ + 2e⁻ → Zn  E° = –0.76 V

Zinc has a much more negative value → zinc prefers to lose electrons → zinc is a good reducing agent.


🔌 Building a Cell

When you connect two half-cells:

  1. The more positive half-equation runs as reduction.

  2. The more negative runs in reverse (oxidation).

  3. Electrons flow from negative → positive.

  4. The salt bridge completes the circuit.

Cell potential is calculated by:

Ecell=EreductionEoxidationE^\circ_{cell} = E^\circ_{reduction} - E^\circ_{oxidation}

If E°cell is positive → the reaction is feasible.


🧠 The Big Ideas Students Must Master

At Hemel Private Tuition, I find students struggle with three key ideas:

1️⃣ Do NOT flip the sign unless reversing the equation.

The data book values are all written as reductions.

2️⃣ Never multiply E° values.

Even if you multiply the half-equation to balance electrons.

3️⃣ E° tells you about feasibility, NOT rate.

A reaction can be feasible but painfully slow.


📊 Why This Topic Matters

Electrode potentials link directly to:

  • Electrochemical cells

  • Batteries

  • Corrosion

  • Disproportionation

  • Transition metal chemistry

  • Predicting reaction direction

It’s one of those topics that pulls inorganic chemistry together beautifully.


🎥 How We Teach It

In the lab studio we:

  • Build real electrochemical cells

  • Measure voltages directly

  • Compare results with data book values

  • Use visual diagrams and animated redox flow

When students see the electrons physically moving through a wire, the abstraction disappears.


🔎 OCR-Style Practice Question

A student mixes Fe²⁺(aq) with Ag⁺(aq).

Given:

  • Ag⁺ + e⁻ → Ag  E° = +0.80 V

  • Fe³⁺ + e⁻ → Fe²⁺  E° = +0.77 V

  1. Predict whether the reaction is feasible.

  2. Write the full ionic equation.

  3. Calculate E°cell.

No comments:

Post a Comment

A-Level Chemistry: Electrode Potentials – Making Sense of Redox

 A-Level Chemistry: Electrode Potentials – Making Sense of Redox If there’s one topic in A-Level Chemistry that feels abstract at first glan...