Friday 13 January 2023

Static Electricity



 Static Electricity - Like charges Repel and Unlike charges attract. It took a lot of practice to get this to work as the students didn't really charge up the rods enough. The Gold Leaf electroscope could be explained using these facts.

Thursday 12 January 2023

The length of the wire is proportional to this length


 Required practical: The length of the wire is proportional to this length. Needing to go back to paper to record the results rather than doing this electronically and plotting in excel to help the students with drawing their own graphs.

Wednesday 11 January 2023

Log tables


As I go through A-Level Maths with students, one of the problems they have is with logs. They have never grown up without a calculator and need help understanding what logs and log tables are and how they work; worse, they don't really see a need for them.

Tuesday 10 January 2023

Lesson Plan Garlic or Mint as antibiotics


Which is the most effective? Garlic or Mint at killing bacteria. After learning how to create bacterial cultures and then make the agar plates, it is time to put everything together to see if everything works.

Lesson Plan

Have students record their observations and measurements and then analyze and interpret the data to draw conclusions about the effectiveness of garlic and mint at killing bacteria.
Introduce the topic by discussing the importance of bacteria and the various ways in which it can affect human health. Explain that the investigation aims to compare the antibacterial properties of garlic and mint.

Have students research the history and uses of garlic and mint in traditional medicine. They can also research any scientific studies that have been done on the antibacterial properties of these plants.

In small groups, have students design and conduct experiments to test the effectiveness of garlic and mint at killing bacteria. Some possible methods for this could include:

Extracting the essential oils from garlic and mint and using them to treat bacterial cultures
Crushing garlic and mint and applying them directly to bacterial cultures
Making a garlic or mint tea and using it to treat bacterial cultures
Have the groups present their findings and results to the class and lead a discussion to review and evaluate the methods used and the conclusion drawn.nd mint at killing bacteria.

Have the groups present their findings and results to the class and lead a discussion to review and evaluate the methods used and the conclusion drawn.

Introduce the topic by discussing the importance of bacteria and the various ways in which they can affect human health. Explain that the investigation aims to compare the antibacterial properties of garlic and mint.

Monday 9 January 2023

Miners Safety Lamp

 



Sir Humphry Davy was a British chemist and inventor who made many important contributions to the field of science. One of his most famous inventions was the miner's safety lamp, which he developed in the early 19th century. The lamp was designed to prevent explosions in coal mines, which were a major hazard at the time. It worked by burning a flame that was protected by a wire mesh, which allowed air to circulate but kept the flame from coming into contact with flammable gases that might be present in the mine. Davy's lamp made it much safer for miners to work, and it played a significant role in the industrialization of Great Britain.

Properties of Alcohols including their reactions with Sodium Lesson Plan




 Reactions with the different Alcohols to see the change in rate and water for comparison and why not to react with acids. An extra experiment is to time how long it takes for the Sodium to oxidise.

Lesson Plan

Objective:

  • To understand the chemical reactions of alcohols
  • To be able to identify and name different types of alcohols
  • To know the different uses of alcohols in industry and everyday life

Materials:

  • Molecular models or diagrams of alcohol molecules
  • Examples of different types of alcohols (e.g. ethanol, methanol, propanol)
  • Handouts with information about alcohol reactions and uses

Warm-up:

  • Ask students what they already know about alcohols.
  • Ask students to brainstorm a list of everyday uses for alcohols (e.g. in cleaning products, as a fuel, in the production of cosmetics).

Direct Instruction:

  • Introduce the concept of alcohols as a class of organic compounds characterized by a hydroxyl (-OH) group attached to a carbon atom.
  • Show students the molecular models or diagrams of different types of alcohols, and have them practice identifying and naming the different types (e.g. ethanol, methanol, propanol).
  • Discuss the physical properties of alcohols, such as their boiling points and solubility in water.
  • Talk about the chemical reactions of alcohols, including the oxidation of alcohols to produce aldehydes and ketones, and the reaction of alcohols with carboxylic acids to form esters.
  • Discuss the uses of alcohols in industry and everyday life, including as solvents, fuels, and in the production of personal care and cleaning products.
Demonstration
  • Demonstrate the reaction of Sodium with the different alcohols.


Guided Practice:

  • Have students work in pairs or small groups to research one specific use of alcohols and present their findings to the class.
  • As a class, create a chart or diagram that organizes the different uses of alcohols by category (e.g. personal care, fuel, solvent).
Student experiment
    Compare the burning rate of three different alcohols, Methanol, Ethanol and Propanol


Materials:

  • 3 alcohol burners or alcohol lamps
  • 3 beakers or small glass containers
  • Methanol, ethanol, and propanol
  • Matches or a lighter
  • Stopwatch or timer
  • Safety goggles and apron

Procedure:

  1. Set up the three alcohol burners or alcohol lamps on a table, making sure that they are well spaced out and in a safe location.
  2. Fill each of the beakers or small glass containers with a different type of alcohol: methanol, ethanol, and propanol.
  3. Using a match or lighter, light the burner or lamp filled with methanol. Start the stopwatch or timer.
  4. Record the time it takes for the alcohol burner or lamp to burn out.
  5. Repeat steps 3 and 4 for the ethanol and propanol burners or lamps.
  6. Calculate the average burning time for each alcohol by dividing the total burning time by the number of burners or lamps used.
  7. Compare the average burning times of the three alcohols.

Safety Precautions:

  • Wear safety goggles and an apron to protect against any spills or splashes.
  • Keep a fire extinguisher nearby in case of emergencies.
  • Use caution when lighting the alcohol burners or lamps, as the alcohol can ignite quickly.
  • Do not leave the burning alcohol unattended.

Questions to consider:

  • Which alcohol burned the fastest?
  • Which alcohol burned the slowest?
  • How does the burning rate of the alcohols compare?
  • What factors might affect the burning rate of the alcohols?
  • How could this experiment be improved or modified?

Independent Practice:

  • Give students a handout with information about alcohol reactions and uses, and have them complete a worksheet that asks them to identify the type of alcohol based on its molecular structure, predict the products of a given alcohol reaction, and describe the uses of alcohols in industry and everyday life.

Closure:

  • Review the key concepts from the lesson, including the characteristics and chemical reactions of alcohols, and their various uses in industry and everyday life.
  • Ask students to reflect on what they have learned about alcohols and how this knowledge might be useful to them in the future.

Sunday 8 January 2023

first time out with spintronics


 First time out with @upperstory spintronics and @matrixtsl Locktronics explaining the flow of electrons around a circuit The students seemed to get the idea better than without the spintronics. 

Lesson Plan

  1. Begin by introducing the concept of electricity and its importance in our daily lives.
  2. Define the terms 'circuit' and 'flow of electricity.' A circuit is a path that electricity flows through, and the flow of electricity is the movement of electrons through a conductor.
  3. Next, explain the three basic parts of a circuit: a power source, a conductor, and a load. The power source provides the electricity, the conductor carries the electricity from the power source to the load, and the load is a device that uses the electricity, such as a light bulb.
  4. Discuss the concept of electrical resistance. Resistance is a measure of how difficult electricity can flow through a material. Materials with low resistance, such as copper, allow electricity to flow easily, while materials with high resistance, such as rubber, block the flow of electricity.
  5. Introduce the concept of a circuit diagram, which is a graphical representation of a circuit. Circuit diagrams use symbols to represent the different parts of a circuit, such as a battery for the power source and a light bulb for the load. List some items.
  6. What goes around the circuit - what is electricity - the flow of electrons. Watch the chain of the spintronics with the blue link and an indicator.
  7. Have students create their own simple circuit diagrams using provided materials, such as batteries, light bulbs, and wires.
  8. Compare adding another resistor to spintronics
  9. Have students build the circuits represented in their circuit diagrams and observe the flow of electricity through the circuit.
  10. Conclude the lesson by reviewing the key concepts and having students summarize the flow of electricity around a circuit.

A level computing 12 Mark questions

Practice planning the 12-mark A-level computing questions. It is not just about getting the facts down but also about organizing them effect...