Tuesday, 10 January 2023
Lesson Plan Garlic or Mint as antibiotics
Monday, 9 January 2023
Miners Safety Lamp
Sir Humphry Davy was a British chemist and inventor who made many important contributions to the field of science. One of his most famous inventions was the miner's safety lamp, which he developed in the early 19th century. The lamp was designed to prevent explosions in coal mines, which were a major hazard at the time. It worked by burning a flame that was protected by a wire mesh, which allowed air to circulate but kept the flame from coming into contact with flammable gases that might be present in the mine. Davy's lamp made it much safer for miners to work, and it played a significant role in the industrialization of Great Britain.
Properties of Alcohols including their reactions with Sodium Lesson Plan
Reactions with the different Alcohols to see the change in rate and water for comparison and why not to react with acids. An extra experiment is to time how long it takes for the Sodium to oxidise.
Lesson Plan
Objective:
- To understand the chemical reactions of alcohols
- To be able to identify and name different types of alcohols
- To know the different uses of alcohols in industry and everyday life
Materials:
- Molecular models or diagrams of alcohol molecules
- Examples of different types of alcohols (e.g. ethanol, methanol, propanol)
- Handouts with information about alcohol reactions and uses
Warm-up:
- Ask students what they already know about alcohols.
- Ask students to brainstorm a list of everyday uses for alcohols (e.g. in cleaning products, as a fuel, in the production of cosmetics).
Direct Instruction:
- Introduce the concept of alcohols as a class of organic compounds characterized by a hydroxyl (-OH) group attached to a carbon atom.
- Show students the molecular models or diagrams of different types of alcohols, and have them practice identifying and naming the different types (e.g. ethanol, methanol, propanol).
- Discuss the physical properties of alcohols, such as their boiling points and solubility in water.
- Talk about the chemical reactions of alcohols, including the oxidation of alcohols to produce aldehydes and ketones, and the reaction of alcohols with carboxylic acids to form esters.
- Discuss the uses of alcohols in industry and everyday life, including as solvents, fuels, and in the production of personal care and cleaning products.
- Demonstrate the reaction of Sodium with the different alcohols.
Guided Practice:
- Have students work in pairs or small groups to research one specific use of alcohols and present their findings to the class.
- As a class, create a chart or diagram that organizes the different uses of alcohols by category (e.g. personal care, fuel, solvent).
Materials:
- 3 alcohol burners or alcohol lamps
- 3 beakers or small glass containers
- Methanol, ethanol, and propanol
- Matches or a lighter
- Stopwatch or timer
- Safety goggles and apron
Procedure:
- Set up the three alcohol burners or alcohol lamps on a table, making sure that they are well spaced out and in a safe location.
- Fill each of the beakers or small glass containers with a different type of alcohol: methanol, ethanol, and propanol.
- Using a match or lighter, light the burner or lamp filled with methanol. Start the stopwatch or timer.
- Record the time it takes for the alcohol burner or lamp to burn out.
- Repeat steps 3 and 4 for the ethanol and propanol burners or lamps.
- Calculate the average burning time for each alcohol by dividing the total burning time by the number of burners or lamps used.
- Compare the average burning times of the three alcohols.
Safety Precautions:
- Wear safety goggles and an apron to protect against any spills or splashes.
- Keep a fire extinguisher nearby in case of emergencies.
- Use caution when lighting the alcohol burners or lamps, as the alcohol can ignite quickly.
- Do not leave the burning alcohol unattended.
Questions to consider:
- Which alcohol burned the fastest?
- Which alcohol burned the slowest?
- How does the burning rate of the alcohols compare?
- What factors might affect the burning rate of the alcohols?
- How could this experiment be improved or modified?
Independent Practice:
- Give students a handout with information about alcohol reactions and uses, and have them complete a worksheet that asks them to identify the type of alcohol based on its molecular structure, predict the products of a given alcohol reaction, and describe the uses of alcohols in industry and everyday life.
Closure:
- Review the key concepts from the lesson, including the characteristics and chemical reactions of alcohols, and their various uses in industry and everyday life.
- Ask students to reflect on what they have learned about alcohols and how this knowledge might be useful to them in the future.
Sunday, 8 January 2023
first time out with spintronics
First time out with @upperstory spintronics and @matrixtsl Locktronics explaining the flow of electrons around a circuit The students seemed to get the idea better than without the spintronics.
Lesson Plan
- Begin by introducing the concept of electricity and its importance in our daily lives.
- Define the terms 'circuit' and 'flow of electricity.' A circuit is a path that electricity flows through, and the flow of electricity is the movement of electrons through a conductor.
- Next, explain the three basic parts of a circuit: a power source, a conductor, and a load. The power source provides the electricity, the conductor carries the electricity from the power source to the load, and the load is a device that uses the electricity, such as a light bulb.
- Discuss the concept of electrical resistance. Resistance is a measure of how difficult electricity can flow through a material. Materials with low resistance, such as copper, allow electricity to flow easily, while materials with high resistance, such as rubber, block the flow of electricity.
- Introduce the concept of a circuit diagram, which is a graphical representation of a circuit. Circuit diagrams use symbols to represent the different parts of a circuit, such as a battery for the power source and a light bulb for the load. List some items.
- What goes around the circuit - what is electricity - the flow of electrons. Watch the chain of the spintronics with the blue link and an indicator.
- Have students create their own simple circuit diagrams using provided materials, such as batteries, light bulbs, and wires.
- Compare adding another resistor to spintronics
- Have students build the circuits represented in their circuit diagrams and observe the flow of electricity through the circuit.
- Conclude the lesson by reviewing the key concepts and having students summarize the flow of electricity around a circuit.
Friday, 6 January 2023
Phonograph strip
This is a phonograph strip. When you press your thumbnail to the ridges and pull, the thumbnail vibrates, and you can hear the message that was recorded on the strip.
Thursday, 5 January 2023
Ballistic Cart Accessory
Using a @pascoscientific ballistic cart accessory to show that the ball will go back into the cart if the cart is moving at a constant velocity. A lot of fun doing this in class.
If a ball is fired vertically while the cart is moving at a constant velocity, the ball will follow a parabolic trajectory due to the combined effects of gravity and the cart's motion. The path of the ball will be affected by the initial speed at which it was fired, as well as the acceleration due to gravity and the velocity of the cart.
If the ball is fired with a high enough initial speed, it may reach a height greater than the cart's height. In this case, the ball will follow a parabolic trajectory that takes it above the cart, and it will eventually fall back down to the cart due to the force of gravity. If the ball is fired with a lower initial speed, it may not be able to reach a height greater than the cart, and it may simply follow a curved path back into the cart.
It's also worth noting that if the cart is moving at a constant velocity, the ball will experience a constant horizontal acceleration due to the motion of the cart. This means that the ball will constantly accelerate horizontally while in the air, which can affect the shape of its trajectory.
Wednesday, 4 January 2023
Planning a Maths Answer
Doppler Rocket
Demonstrating the Doppler effect with the @pascoscientific Doppler Rocket: As the rocket moves away, students can hear the pitch drop (red s...
-
Negative feedback is a difficult concept to try and get over so I tried using a balance board and the @pascoscientific smart cart strapped...
-
We went to the Bett Show a few weeks ago and there we saw a model of a Liver. It had been knitted so we thought we would have a go. After ...
-
#Physics Taking wind speed readings using the PASCO scientific wireless weather station. Grabbing some monthly data on the weather in t...